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What do we need to go beyond Herschel?
• Larger detector arrays

Fabrication & multiplexed readout
• More sensitive pixels

Pixel engineering & on-chip refrigeration
• Polarization-sensitive pixels
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From Spitzer to Herschel and Beyond
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Large TES arrays

88--pixel FIBRE array (with GSFC)pixel FIBRE array (with GSFC)

1,2801,280--pixel SCUBApixel SCUBA--2 2 subarray subarray 
(with the UKATC and the U of E)(with the UKATC and the U of E)

6464--pixel xpixel x--ray microcalorimeter arrayray microcalorimeter array



SQUIDs

I
• Superconducting Quantum 
Interference Devices (SQUIDs)

• The most sensitive devices for the 
measurement of magnetic fields. 

• Quantum interference between two
Josephson tunnel junctions,
analagous to a two-slit interferometer. 

• Output voltage is a periodic function 
of the applied magnetic flux.
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SQUID Fabrication
100-SQUID Series Array for the 
Cryogenic Dark Matter Search, 

APEX-SZ, and the SPT
• Nb/Al/Al2O3/Nb trilayer technology
• Low temperature (30 C) ECR 

PECVD SiO2 

• Two wiring and dielectric levels
• PdAu shunt and damping resistors
• 12 lithography levels

1 × 32 MUX Array for ACT/Penn 
Array/SAFIRE-SOFIA etc.

32 × 40 MUX Array for SCUBA-2



Time-Division Multiplexer

• One SQUID for each pixel
• SQUIDs are switched on one at a time
• If Nyquist criterion is met with low-noise SQUIDs, signal is reconstructed without loss.



MUXed x-rays
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Readout electronics 

MUX 
chip

3U crate with room-temperature 
electronics for 8×32 array



SCUBA-2 Bolometer Pixel Architecture

TES bolometer pixels
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In-focal-plane multiplexer (SCUBA-2)

1,280-pixel array chip

Single pixel from array



SCUBA-2 850 µm Subarray Complete
1,280-pixel TES bolometer 

• SCUBA-2 will consist of 10,240 TES bolometer 
pixels (half at 450 µm, half at 850 µm) on the 
JCMT in 2006.
• The first 1,280-pixel 850 µm subarray is 
completed

1,280-pixel SQUID Multiplexer 

bump-
bonded 
subarray
(TES+MUX)



SCUBA-2 array module

40x32 sub-array

Niobium
Flex Cable SQUID

Series
Array

Amplifiers

Ribbon Cables to Room Temperature

Ceramic PCB



Towards larger cameras: microwave MUX

• Present MUX techniques are sufficient for 
~10 kpixels

• Much larger arrays at shorter wavelengths 
require larger bandwidth in the MUXed 
channel

• Multiplexing of two-pixels demonstrated with 
excellent noise performance (0.5 µΦ0/Hz1/2)

• Multiplex thousands of SQUIDs in one HEMT 
amplifier channel

• Room-temperature electronics are 
challenging

Straw-man circuit: Q ~ 4000 
(distributed resonators also possible)

Calculated reflected power 
at impedance match

2-12 GHz HEMT 
with < 5 K noise 
temperature



More sensitive bolometers

We need to improve pixel sensitivity by ~2 orders of magnitude, 
requiring lower bolometer thermal conductance or operational 
temperature.

• Smaller, carefully engineered leads on isolated pixels
• or, small volume with planar antenna coupling 

NEP electron-phonon ∝ Vol 1/2

• or, much lower temperatures (~10 mK?)
NEP electron-phonon ∝ T3

Reading out more sensitive pixels is not much harder, although you 
need filters to protect the pixel from the amplifier power.



On-Chip Microrefrigerators for FIR-mm detectors
• On-chip microrefrigerators can be integrated with cryogenic sensors, 
easing the requirements on ADRs, and allowing lower temperatures.

• Demonstrated cooling from 260 mK to 110 mK, and “surplus” 
cooling power of 50 pW (enough for detectors)

• Cooling from 260 mK → 70 mK possible
• Cooling from 50 mK → < 10 mK possible
• Cooling from 600 mK possible in multistage device
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On-chip cooled platform
NEP electron-phonon ∝ Vol 1/2 T3  → Ultra-low NEP much easier at low T

TES x-ray
sensor

400 µm

SiN
membrane

NIS junctions

NIS junctions

Detectors

Si @ high tempSi or SiNx @ low TSi @ high temp

Cold FingerCold Finger
Refrigerator junction



Microwave NIS detectors
• Sensor = NIS junction operated as a detector.

SINIS
detector

measured NET vs f device photo 

- NET < 0.6 µK/Hz1/2

- NEP < 10-16 W/Hz1/2

- T = 270 mK 
(self-cools to ~170 mK)

- readily multiplexed
with D. Schmidt
and K. Lehnert



Future prospects

• Detector array scale
10,000 pixels are being fabricated for SCUBA-2. This is far from being a 
flight instrument.
100-1000 kpixel cameras may be possible at shorter wavelengths with 
microwave readout techniques and new generations of room-temperature 
electronics, but significant development, $, and time is required. 

µWave SQUID MUX, µWave NIS, or KIDs (Zmuidzinas talk…)
• On-chip microrefrigeration

Cooling 250 mK → 110 mK demonstrated, 80 mK is close
Cooling 50 mK → < 10 mK is feasible, a path to ultra-low NEP detectors.

• All of these techniques are compatible with antenna-coupled, polarization-
sensitive pixels.


